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ABSTRACT 
We present a novel visualization for ACT-R/PM models of 
cognitive processes to support the model development. Because 
the underlying production system paradigm does not specify an 
explicit flow of control, it is rather difficult to grasp the structure 
of this kind of user models. Therefore, we developed an algorithm 
that analyzes the interdependencies of ACT-R/PM productions by 
resembling the main parts of the matching process of the 
production cycle. The algorithm produces a graph with nodes as 
specifications of the state of the declarative memory and edges as 
productions which are applicable in these states. States are 
generalized to reduce the complexity of the control flow. The 
graph is transformed into a state-chart like visual representation. 
Goal oriented behavior with sub-goaling is considered with sub-
graphs. The algorithm is implemented as a plug-in for the 
integrated development environment eclipse. 

Categories and Subject Descriptors 
D.2.2,  [Design Tools and Techniques] 

General Terms 
Algorithms, Documentation, Economics, Human Factors, 
Languages. 

Keywords 
Cognitive User Modeling. Visualization of Flow Control, State 
Chart 

1. INTRODUCTION 
ACT-R [2-3,5-6] is a cognitive architecture and a programming 
environment for user models. These models describe the users’ 
cognitive structures and processes at a fairly atomic level. An 
ACT-R user model consists of a set of production rules and the 
specification of initial declarative memory elements organized in 
a semantic network. In each cycle of the production system, the 

condition part of all production rules is tested against the current 
state of the active declarative memory elements. Then one of the 
matching rules is selected by a conflict resolution algorithm 
which incorporates a network of sub-symbolic measures. Finally, 
the action part of the selected rule is executed to modify content 
and activity of declarative memory elements.  

ACT-R not only implements a theory of human associative 
memory but provides the modeler with detailed mechanisms for 
perception and motor action. The human mind is abstracted as a 
modular system. Central executive is realized as a production 
system core that interacts with perception, motor action, memory 
and other subsystems via buffers. These buffers implement laws 
and restrictions of data retrieval and access between the central 
production system and the modules. The authors of the latest 
version of ACT-R [3] are convinced that a mapping of some 
elements of the architecture to certain cortical regions like 
dorsolateral and ventrolateral prefrontal cortex (DLPFC, VLPFC) 
or basal ganglia is possible (Figure 1).  

The specification of the cognitive architecture imposes severe 
constraints on how to model user behavior. From an engineering 
point of view, these constraints are even supporting, because of 
the guidance they might give to the modeler. Therefore we think 
that it is more effective and efficient to use cognitive architectures 
than general purpose/AI languages like Prolog or cognitive 
toolboxes like COGENT [7]. 
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Figure 1. Modular software architecture of the cognitive 
architecture ACT-R (adapted from [3]). 
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Despite of its very fine-granular description of users’ cognitive 
processes, ACT-R/PM has been applied in different HCI task 
domains, e.g. cell phone menu design [1], car driving [12], air 
traffic control [11], flight management [13], and process control 
in chemical plants [14]. 

However, ACT-R/PM is not yet an industrial engineering tool to 
efficiently describe goal-oriented behavior of users in human-
machine-interaction. One reason is, that the underlying production 
system paradigm does not specify an explicit flow of control (i.e. 
function application in the functional or method sending in the 
object-oriented programming paradigm). A conflict resolution 
algorithm decides at run-time which one of all the possible 
production rules should actually fire. The purpose of this scheme 
is to handle program modifications during runtime, to increase 
robustness to program changes by providing modularity and 
independence of program elements. The drawback of this 
programming paradigm shows up in program development 
(modeling, testing, debugging, and sharing). The lack of explicit 
representation of control flow makes it rather hard to get familiar 
with someone else’s (including myself after a few days) program. 
In our opinion, the main key to understanding a user model is the 
possible sequence of productions. 

2. CONTROL FLOW IN PRODUCTION 
SYSTEMS 
A program is a sequence of instructions. Normally the sequence 
of program instructions (e.g. in a file) is not the same as the 
observable sequence of instruction processing. The processing 
sequence is the instantiation of a program instruction sequence. It 
results from the control flow within the program. In procedural 
languages the sequence of instructions is explicitly defined by the 
modeler at programming time. Instructions are normally executed 
in the order they appear. Control flow statements change this 
sequential flow of control and allow to execute blocks of 
statements conditionally (if-else, switch-case) or repeatedly 
(while, do-while, for). Further language elements specify 
branching (break, continue, label, goto, subroutine/function-calls, 
return) and exception handling (try-catch). 
Despite of all these high-level statements, programs can be 
reduced to three basic elements instruction statement, goto-
statement, and conditional. 
All other cases can be represented as instruction sequences and 
conditional constructs. Branching to subroutines can be 
represented as goto-statements, iteration control is the 
combination of conditional, instruction sequence, and goto-
statement. 
Thus a program can be represented as a graph with instructions as 
nodes. Directed edges connect an instruction with its next 
possible successors. In this notation, a program instantiation is a 
sequence of nodes that describes a way through the graph from 
the start instruction to a stop instruction via the edges. 
In production systems the sequence of instructions, that is the 
sequence of production instantiation applications, is not stated 
explicitly (Figure 2b) but a result of working memory state and 
conflict resolution algorithm. Only in well defined static problem 
solving domains one could just record the sequence of production 
instantiation applications during run-time and analyze this log 
then after. However, at least in the human-machine interaction 

domain, the program instantiation depends on externally 
perceived information. Furthermore, most cognitive architectures 
utilize stochastic noise at some point of model execution. It is 
obvious, that visualizing a sequence of instruction processing as 
shown in Figure 2c can not provide the necessary information to 
match the description of the production system model (Figure 2b) 
with the observation. In fact, to serve this purpose one has to 
derive and display the program graph. Here nodes describe 
distinguishable states of the system (as defined by the condition 
part of the productions or the state variables of a procedural 
language), the directed edges depict possible transformation (by 
applying the action part of an applicable production) to another 
distinguishable state of memory. 

 
Figure 2. Different Models of a simple counting example 

program as (a) procedural model, (b) rulebased model, (c) 
Instruction Processing Graph, (d) Program State Graph 

3. EXAMPLE 
This section illustrates the basics of the visualization with a 
simple model of mental addition. The goal of the model, which 
was taken from the ACT-R 5.0 Tutorial Unit 1 at http://act-
r.psy.cmu.edu/tutorials/, is to add two small numbers. These 
Numbers are given in arg1 and arg2, the result must be smaller 
than 11. Addition is implemented as a counting process. That is, 
the algorithm starts the computation with arg1 and increments this 
by 1 for arg2 times. The number of times the increment was 
executed is maintained in the variable count. 
The structure of the addition-as-counting model is quite simple. 
The model assumes that the user has a stable representation of the 
order of numbers. Thus, the initial working memory consists of 10 
facts that represent the successors of numbers 0 to 9. The goal 
itself has four named slots, i.e. name-value pairs. The slots arg1 
and arg2 contain the addends, sum represents the result of the 
addition, and count maintains a counter. The procedure is 
implemented with four productions, all of them manipulate the 
same goal, sub-goaling is not necessary. 

Initialize-Addition: This production can be applied if sum is nil, 
that is no value has yet been assigned to this variable. The action 
part of this production sets the sum slot of the goal to arg1, and 
count is set to 0. Furthermore, the retrieval buffer is asked for a 
declarative memory element that represents the successor of arg1. 

Terminate-Addition. It can be applied if sum is not nil and arg2 
and count have the same value i.e. count was arg2 times 
incremented by 1. In that case count is set to nil. The previously 
described initialize-addition production can not be applied after 
that because sum is not nil. No other production can be applied 
either thus the computation stops. 



Increment-Sum matches if the goal’s slot sum is not nil, count is 
not nil, and the retrieval buffer holds a fact about the successor of 
sum. Once the production is executed, sum is set to the retrieved 
successor and the retrieval buffer is asked for the successor’s 
successor. 

Increment-Count: This one can be applied if the goal’s slot sum 
is not nil, count is not nil and the retrieval buffer holds a fact 
about the successor of count. The application of this production 
sets count to its successor and the retrieval buffer is asked for the 
successor of sum. 
Setting the goal to add the number five and two (second-goal ISA 
add arg1 5 arg2 2)1 results in a sequence of instruction processing 
as tabulated in Table 1. From this sequence one can see, that 
model alternates between incrementing the count from 0 to 2 and 
incrementing the sum from 5 to 7. Initialize–Addition starts things 
going and requests a retrieval of an increment to the sum, i.e. the 
successor. Increment-Sum processes that retrieval and requests a 
retrieval of an increment to the count. That production fires 
alternately with Increment-Count, which processes the retrieval of 
the counter increment and requests a retrieval of an increment to 
the sum. Terminate-Addition recognizes when the counter equals 
the second argument of the addition and modifies the goal in a 
way that no condition of any production can match. This is simply 
done by setting count to nil. In consequence, the program stops. 

Table 1. Sequence of Instruction Processing for the addition-
as-counting Example while adding five and two 

Time [sec] Name of Production Fired 
0.050 Initialize-Addition 
0.150 Increment-Sum  
0.250 Increment-Count  
0.350 Increment-Sum  
0.450 Increment-Count  
0.500 Terminate-Addition  
0.500 * Nothing to run:  No productions, no events. 
 
We use this introductory example as starter in our modeling 
courses. Despite of its simplicity, it is our experience, that most of 
our students have severe difficulties to predict the observed 
instruction processing sequence from the user model code. In our 
opinion the main barrier is the unfamiliarity with the production 
system approach – most of our students do not have any artificial 
intelligence background. 
But, if we support them with a state graph, showing the states of 
the goal buffer as edges and the productions as transitions (Figure 
3), we can observe that the process of understanding is 
significantly furthered. Up to now, no empirical sound study was 
conducted, so it remains unclear if this is a transferable 
observation that in fact can be attributed to the graphical support 
(and not to the enthusiasm of the teacher about this didactical 
tool). 
                                                                 
1 The slots sum and count, which are referenced by the 

productions, are initialized to nil by default 

 

Figure 3. Program State Graph of the addition-as-counting 
model of the ACT-R/PM Tutorial Unit 1. Nodes denote states 
of the goal buffer, each edge stands for one production rule 

and is labeled by the productions name, additional conditions 
on other buffers and the modification on buffers 

4. GENERALIZED STATES 
The conflict resolution algorithm of ACT-R/PM checks all of the 
buffer conditions – goal, memory, perception and motor system, 
etc. Considering all of the combinations of conditions that are 
described by the condition part of the set production would most 
probably result in an explosion of the state space. Therefore some 
reduction strategy is necessary. A natural choice is to reduce the 
analysis on the goal buffer only. This is because the goal buffer is 
of particular importance in ACT-R. The goal is normally used to 
represent different stages of problem solving and plan execution 
and to preserve problem specific data over the course of 
production execution. A heavily used design pattern in ACT-R 
user models is to enforce a particular sequence of productions by 
manipulating the goal. If one production application should be 
followed by another, the first production modifies the goal’s state 
in its action part in a way that the second production is triggered 
in the next production cycle. 
In our implementation of the program state graph, nodes represent 
goal states, which trigger certain production sets. Goal states are 
relevant assignments of the current goal’s slots. Transitions 
between states will be conducted by productions. At this point of 
time, every production in the model is represented by exactly one 
transition in the state chart. 
To make the state chart more concise, we try to reduce the set of 
possible assignments to goal conditions to generalized goal states. 
This is accomplished by a unification process. This process seeks 
to generalize the specification of the slots of a goal state. Slots 
can be set to a certain value, to any value but a certain one, be 
bound to no value or be bound to any value. 



5. SUB GOALING 
Sub-goaling and creation and handling of parallel goals are major 
features of ACT-R/PM models. In the state chart visualization 
every goal is treated as a super-state. The goal states and 
transitions between them are represented as sub-states and 
transitions between them. Goal creation and release is represented 
as transitions between super-states (see Figure 9). 

6. IMPLEMENTATION DETAILS 
6.1 Goal State Generalization 
The details of the algorithm are described in [10]. In this paper, 
we concentrate on the central element of goal states 
generalization. In particular in recursive models one might 
observe, that the number of distinguishable states (without start 
and stop states) might be less than the number of patterns found in 
the condition and action parts of the production rule. This is 
illustrated in Figure 4. The two production rules P1: S1  S2 and 
P2: S3  S4 both operate on the same three-slot goal type. S1 
and S3 are the condition patterns, S2 and S4 are action patterns 
that will be applied on the goal element, whenever the related 
production fires. Table 2 lists the condition and action patterns in 
detail.  

Table 2. Condition and Action patterns of goal state 
generalization example 

Production Goal Pattern Slot1 Slot2 Slot3 
Condition: S1 A =var1 =var2 P1 
Action:    S2  =var3  
Condition: S3  =var4  P2 
Action:   S4 nil   

 
Within the context of the model, the goal states S2 and S3 can be 
generalized by S1. That means that executing S2 does not change 
the principal nature of the goal state and S3 matches whenever S1 
matches. Given an initialization of the goal state that fills all of 
the slots, one can easily derive the program state graph given in 
figure 4.   

 
Figure 4. Program state graph for the goal state 

generalization example  
The identification and generalization of goal states is 
accomplished by means of the matching operator M. This 
operator compares the condition part pattern of a production with 
the current goal. The comparison process is not symmetric as the 
current goal is guarantied to be more specific than any matching 
condition part pattern. This means that for all productions that 
match with the goal buffer the following is true: (1) the slots of 
the condition part as well as the action part of the production that 
refers to the goal pattern constitute a subset of the slots of the goal 
buffer, and (2) the values of the production slots do match the 
values of the goal buffer slots or can be unified. 

This leads to the following formal definition of the matching 
operator M [10]. Given the following data structures and relations 

goal state S = (goal-type, slots) 
slots = {sl | sl = (name, symbol)} 
symbol = (type, value) 
type ∈ { nil, var, const} 
g : S → goal-type 
s: S → slots 
Symbol : sl → symbol 
Value: symbol → value 
Name: sl → name 
Type: symbol → type 
 

Let S1 and S2 be two goal states, then 
S1 M S2 == true 

iff 
L1: g(S1) == g(S2) &&  
L2: ∀ sl1 ∈ s(S1) ∃ sl2 ∈ s(S2) :  
L3:  Name(sl1) == Name(sl2) && 
L4:  ( Type(Symbol(sl1))==Type(Symbol(sl2)) == nil || 
L5:       Type(Symbol(sl1)) == Type(Symbol(sl2)) == var || 
L6:    (Type(Symbol(sl1)) == Type(Symbol(sl2)) == const 
&& 
L7:    Value(Symbol(sl1) ) == Value(Symbol(sl2)) ) || 
L8:    ( Type(Symbol(sl1)) == var &&  
L9 :     Type(Symbol(sl2)) == const )) 
 
Let’s put this formal description into words: Line 1 (L1) tells us, 
that S1 and S2 may only match if they relate to the same goal-
type. (L2) If this is granted, then for every slot of S1 there must 
be a matching slot in S2. Two slots match if both (L3) name and 
(L4-L9) content of the slot match. The content of two slots match 
if one of the following conditions is true: (L4) both are empty 
(nil), (L5) both are to be bound (var), (L6-7) both refer to 
constants with the same value or finally if (L8-9) slot 1 can be 
bound and slot 2 refers to a constant. 
If we now apply the match operator M on the goal states S1, S2, 
S3 and S4 as given in figure 4 we will easily see, that S2 M S1 == 
true (L2, L5). However, S1 M S2 == false because (L2) fails. 
Both conclusions are true for S1 and S3. Finally, S4 M S1 == 
false; nil and var do not match. This leads to the result, that S2 
and S3 can be generalized to S1 while S4 is a distinct state. This 
results in the graph as shown in figure 4.  

6.2 Visualization 
The program state graph is visualized using the graphical notation 
of State Charts [8]. Figure 5 shows the basic elements: Boxes, 
labeled with S and T represent two distinguishable states. The 
arrow from S to T represents a state transition.  

 
Figure 5. State Chart Notation for reactive systems. S,T are 

states, E is the Event that triggers the transition, C a condition 
that has to be fulfilled and A describes the Action taken 

during transition 



The label at the transition follows a certain format and contains 
elements, which specify the transition. E denotes the event that 
triggers the transition, C describes a condition that has to be true 
for the transition to occur, and A is the action taken during 
transition. This set of basic elements is completed by special 
symbols for the initial state (filled circle) and the stop states 
(filled circle with white border). 
To apply this well-known schema to program state graph 
visualization we modified it gently, as illustrated in Figure 3. The 
nodes (boxes with round edges) are labeled with the description of 
the slots of the generalized goal state they stand for. Each edge 
represents a single production. Instead of event E we label the 
edge with the name of the production. The tests on additional 
buffers that are not part of the generalized goal state analysis, but 
have to be fulfilled to allow the production to become part of the 
conflict set, are noted as condition C. However, we chose to not 
use brackets but to code this by color and an italic font type. The 
same is true for the action part of the production. This naturally 
maps to the action-element A of the state chart notation, once 
again due to the expected amount of text we decided to utilize 
color coding and a bold font type instead of the separating slash. 

6.3 Implementation as Eclipse Plugin  
We decided to implement the proposed algorithm and 
visualization tool within the Eclipse environment. Eclipse is a 
framework for custom integrated development environments. It 
was explicitly designed to be extended. This is done by means of 
plug-ins. A plug-in provides a new editor for a defined format. 
The editor extends the internal list of known capabilities for the 
defined file type and is activated by the user. In our case this is an 
ACT-R model. 
From a programmers point of view the editor implements a public 
interface that defines the externally exposed functionality of all 
editors. This common interface allows, to integrate the new plug-
in into the framework just as any other editor. The user won’t see 
any difference, and indeed there is no difference, because 
eclipse’s own editors are in fact plug-ins, too.  
The plug-in for ACT-R/PM Model Visualization builds upon the 
Graphical Editing Framework (GEF). GEF is a plug-in that builds 
on different layers (Figure 6) and provides support for the 
drawing of primitive figures like boxes, connecting lines, text 
widgets, etc. Furthermore, GEF already implements some 
interaction primitives like the dragging of elements, undo/redo 
interfaces, etc. 

 
Figure 6. The GEF Layered Architecture builds upon other 
plug-ins of the Eclipse Framework and provides easy access to 
the functionally of those layers [4] 

GEF implements a model-view-controller design pattern. To 
implement an editor, one has to provide three distinct packages. 
The model package provides data representation classes for each 
graphical element that should be displayed. The edit package 
contains the implementation for handling the graphical elements 
and the bend- and endpoints of each connection between 
elements. Finally, the classes of the figure package implement 
methods to display the graphical representations of all model 
elements in the editor window. A well written application-
oriented documentation of the interfaces and functionality of the 
different layers is given by [9]. 

 
Figure 9. A screen-shot of the editor with a model that 
includes a sub-goal 

7. CONCLUSION 
The visualization for ACT-R user models has the potential to 
become a supporting software engineering and modeling tool. In 
particular it might be handy in the stage of implementing a formal 
model that describes a rule-based sequence of actions into the 
production paradigm of the cognitive architecture (Figure 9).  
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Figure 9. Within the user modeling process the visualization 
tool helps during implementation and program verification 
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At this moment however, the tool is hardly more than a proof of 
concept. It is used at our department to visualize the state 
structure of user models and thus allows us to gain insight on the 
control flow in complex cognitive models. On the top of the wish 
list is an improved layout manager. Due to the simplicity of the 
current implementations layout manager all models need to be 
rearranged spatially. The second important limitation of the 
current implementation is the scalability. It is not yet possible to 
cluster visualization elements or to zoom out. Further 
improvements will address these limitations: A more 
sophisticated layout manager and support for exploring large 
models is under construction. 
The second direction of further development aims towards 
support functions for model analysis. Since ACT-R/PM models 
are internally represented as graphs it is possible to use simple 
measures about the connectedness of sub-graphs to partition the 
visualization in more or less independent clusters. Thus this tool 
is a first step towards a visual programming and modeling 
environment. A loose integration with the ACT-R/PM interpreter 
could make it an integrated editing and simulation environment. 
Applied cognitive modeling will become an important 
engineering tool for analyzing and designing human-machine 
systems. It will clearly benefit from any software engineering 
support and more development tools like the visualization of 
ACT-R/PM models that was presented in this paper. The 
integration into a development environment would then make 
modeling even more efficient. Due to its highly modular plug-in 
concept the Eclipse framework would be a first choice candidate 
as an integration platform. 
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